
LECTURE- 31 UNIX EMULATION IN MACH

Distributed Operating System

Reconsidering the Kernel

Interface
 Mach and NT are representative of systems

that seek to provide richer, more general
kernel interfaces than Unix.
◦ decouple elements of process abstraction
 virtual address space, memory segments, threads,

resources, interprocess communication (IPC) endpoints

◦ provide a fully general set of kernel primitives for
combining these essential elements in arbitrary
ways
 powerful enough to implement Unix “as an application

program”

 the kernel interface is not the programming interface

◦ rethink division of function between kernel and
user space
 Which features must be supported in the kernel?

Distributed Operating System

The Microkernel Philosophy

 The microkernel philosophy evolved in the mid-
1980s as a reaction to the increasing complexity
of Unix kernels.
◦ V system [Cheriton]: kernel is a “software backplane”
 advent of LAN networks: V supports distributed systems,

and mirrors their structure internally (decomposed)

◦ Mach: designed as a modern, portable,
reconfigurable Unix
 improve portability/reliability by “minimizing” kernel code

 support multiple “personalities”; isolate kernel from API
changes

 support multiprocessors via threads and extensible VM
system

 Microkernels are widely viewed as having “failed”
today, but some key ideas (and code) survive in
modern systems.

Distributed Operating System

A Fuzzy Look at Mach and NT

“microkernel”

Windows

subsystem

server

Windows

process
Unix

process Unix

subsystem

server

NT “kernel” is

the core of

the “executive”.

Environment server creates processes

and operates on them via system calls;

kernel may delegate process system

calls to the environment server.

Disclaimer: this is the concept behind

Mach and the original NT, but early

Mach 2.5 and today’s W2K/XP look

quite different.

Distributed Operating System

Microsoft NT Objects
 Most instances of NT kernel abstractions are

“objects” named by protected handles held by
processes.
◦ Handles are obtained by create/open calls, subject

to security policies that grant specific rights for
each handle.

◦ Any process with a handle for an object may
operate on the object using operations (system
calls).
 Specific operations are defined by the object’s type.

port

file

event

object

handles

user space kernel

NT object handles are named,

represented, and protected exactly

like Unix file descriptors.

Distributed Operating System

NT Processes

 1. A raw NT process is just a virtual address
space, a handle table, and an (initially empty)
list of threads.

 2. Processes are themselves objects named
by handles, supporting specific operations.
 create threads

 map sections (VM regions)

 3. NtCreateProcess returns an object handle
for the process.
 Creator may specify a separate (assignable) “parent”

process.

 Inherit VAS from designated parent, or initialize as
empty.

 Handles can be inherited; creator controls per-handle
inheritance. Distributed Operating System

Mach Overview

 Mach is more general than NT in that objects
named by handles can be served by user-mode
servers.
◦ All handles are references to message queues called

ports.

◦ Given an appropriate handle (rights) for the port, a
thread can send or receive from a port: it’s a
capability.
 Mach has a rich and complex set of primitives for

sending/receiving on ports and transferring port rights.

◦ Some ports are served by the kernel.

◦ Ports can be served by user processes (tasks).

◦ Everything is a port; all interactions are through ports.

◦ Communication (IPC) performance is everything.

Distributed Operating System

Mach

microkernel

Unix

process Unix

server

tasks/VM

threads/scheduling

ports/messages

emulator

reflected

syscall trap

IPC

exceptions

Distributed Operating System

Evaluating OS Structures
 How do we evaluate OS structures and

implementations?
◦ Maintainability, extensibility, reliability, and

elegance are difficult to quantify.
◦ Systems research is a quantitative discipline.
 “Performance is paramount.” [Cheriton]

 How can we identify and separate the effects
caused by:
◦ artifacts of the current state of hardware

technology?
◦ characteristics of the workload?
◦ essential properties of structure or implementation?

 How can we draw conclusions of long-term
significance from measurements of any
particular system?

Distributed Operating System

User/Kernel Division of

Function
 1. Many system calls don’t require access to

mutable global data in the system (e.g., the
Unix server).
◦ examples: getpid, installing signal handlers
 data items are constants or are used only within the

emulator

 2. The system can reduce the cost of these
operations by executing them entirely within a
library.
 e.g., the Mach emulator, Unix malloc and free

 3. A kernel or server primitive is needed only in
cases involving resource allocation or
protection.
 thread libraries, user-level IPC [T. Anderson et. al]

 logical conclusion: Exokernel “library operating systems”

Distributed Operating System

Unix/Mach System Calls

microkernel

process

Unix server

emulator

Reflected syscall trap:

redirect to emulator;

send message to server.

IPC

Syscall trampoline offers binary compatibility at higher cost

than a DLL (extra trap/return): either scheme can be used.

Extra TLB references

in server.

Extra trap/return for syscall

messaging to server.

Some system calls

are handled directly

in the emulator.

Distributed Operating System

What to Know

1. The remaining slides in this batch serve to
illustrate the effect of OS structures on
performance. I did not cover them in class this
year, but they may help to reinforce the
discussions about OS structure and
implementation.

2. Be sure that you understand the key ideas
behind the three alternative structures we looked
at: microkernels, library OS (Exokernel), and
extensible kernels (SPIN). Be able to
compare/contrast the goals, approaches,
strengths, and weaknesses of each.

3. For the discussion of Exokernel and SPIN in
class I referenced some of the high-level slides
from Engler and Savage, which are available on
the Engler and SPIN web sites linked through
the readings page on the course web.

Distributed Operating System

Issues and Questions for OS

Performance
 1. How is evaluating OS performance

different from evaluating application
performance?

 2. (When) is OS performance truly important?
 SPEC benchmarks: set me up and get out of my way.

 Amdahl’s Law says optimizing the OS won’t improve
performance here.

 What workloads are OS-intensive? Do they matter?

 3. How to characterize OS performance?
 macrobenchmarks measure overall workload

performance

 analysis must decompose costs into essential elements
 allows us to predict the effect of optimizing particular elements

 microbenchmarks measure individual elements in
isolation

Distributed Operating System

Architectural Basis of OS

Performance
 1. OS demands on the architecture diverge

from applications.
 We don’t do much computation inside the OS kernel.

 2. Basic OS functions have architecturally
imposed costs.
 OS spends relatively more time in “exceptional”

operations.

 mode switches (traps and returns), copy, save/restore
registers, context switch, handle interrupts, page remap,
page protect

 These often depend on memory system behavior.

 3. “Operating systems aren’t getting fast as fast as applications.”
 [Ousterhout OSR90], and [Chen/Bershad SOSP93], [Rosenblum SOSP95]

 Other things being equal, the relative importance of OS
performance will increase with time.

Distributed Operating System

OS Implications for

Architecture
 Whose problem is this? [Levy et. al. ASPLOS91]

 Point: architects must put some effort into
optimizing operations that are critical to OS
performance:
 Design trap/exception mechanisms carefully:

“exceptions are not exceptional”. [also Levy/Thekkath 94]

 Kernel code is more write-intensive ==> deepen the write
buffer.

 Design cache architectures to minimize user/kernel
conflicts, etc.

 Counterpoint: OS builders must design to
minimize inherent architectural costs of OS
choices.
 Minimize expensive operations (e.g., traps and context

switches).

Distributed Operating System

Performance-Driven OS

Design
 1. Design implementations to reduce costs of

primitives to their architecturally imposed
costs.
 Identify basic architectural operations in a primitive, and

streamline away any fat surrounding them.

 “Deliver the hardware.”

 2. Design system structures to minimize the
architecturally imposed costs of the basic
primitives.
 If you can’t make it cheap, don’t use it as much.

 3. Microbenchmarking is central to this
process.
 [Brown and Seltzer] is about microbenchmaking

methodology.
Distributed Operating System

Examples

 What are the architecturally defined
costs of...
◦ process creation?
 fork, and fork by shell

 exec of statically linked executable

 exec with dynamic link

◦ installing a signal handler?

◦ reading from a file descriptor?

◦ IPC?

 How can we determine these costs
empirically?

Distributed Operating System

Costs of Process Creation by

Fork
◦ one syscall trap, two return-from-trap, one process

switch.

◦ allocate UPAGES, copy/zero-fill UPAGES through
alias

◦ initialize page table, copy one stack page (at least)
 fits in L2/L3? Depends on size of process?

◦ cache actions on UPAGES? for context switch?
 (consider virtually indexed writeback caches and TLB)

user ID

process ID

process group ID

parent PID

children, etc.
kernel stack

signal handlers

process stats

PCB

UPAGES (uarea)

Distributed Operating System

Additional Costs of Fork on Mach

or NT
 1. Kernel call for task/process create with

VM inheritance from the assigned
parent.
 inherit Mach emulator and emulated syscall table

 2. Additional kernel call(s) to start a
thread in the child.
 task create/inherit does not clone any threads

 3. Mach:
 extra code/data/stack page references for emulator

 clean/reset inherited emulator state in child (e.g., stacks,
globals)

 set up VM regions shared between server and
emulator

 set up IPC port to server in the child

Distributed Operating System

Exec Revisited

text

data idata
wdata

header

symbol

table

relocation

records

text

data idata
wdata

header

symbol

table

relocation

records

BSS

user stack

args/env
kernel u-area

text

data

text

data

loader

Distributed Operating System

Costs of Exec

 1. Deallocate process pages and
translation table.
 invalidate v-cache (can delay until reallocated)

 TLB invalidate

 2. Allocate/zero-fill and copyin/copyout the
arguments and base stack frame.
 no v-cache push since no kernel aliasing is needed

 3. Read executable file header and reset
page translations.
 map executable file sections on VAS segments

 4. Handle any dynamic linking.
 jump tables or load-time symbol resolution

Distributed Operating System

Exec on a Microkernel
 1. Each primitive action for exec is

(typically) a kernel call.
 2. Copyin/copyout of

arguments/environment and base stack
frame is problematic.
◦ need a kernel call to read/write another

address space
 (but emulator handles argv/env internally)
 how to do this copy efficiently?

◦ similar problem for read/write system calls
 Mach uses mapped files and handles read/write in

emulator
◦ L4 ukernel maps all user pages into the VM of the trusted servers.

 3. Solution: add exec primitive to the
“microkernel”.
◦ Most exec behavior is defined by the executable image header.

Distributed Operating System

Lower Bounds on IPC

 IPC request/response requires a few
primitive operations:
◦ context switch
 cache flush? TLB flush?

◦ thread switch or stack switch
 scheduling decision? Mach uses handoff

scheduling.

 LRPC [Bershad]: decouple threads from address
spaces

 threads cross address spaces for cross-domain call

 adopted in NT quick-LPC and event pair

◦ save/restore registers...how many?

◦ copy arguments through the kernel?

Lesson: “optimize for the

common case”; the

common case for

message passing is local.

Distributed Operating System

ASSIGNMENT

 Q: Explain Unix emulation in MACH.

Distributed Operating System

