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Reconsidering the Kernel 

Interface 
 Mach and NT are representative of systems 

that seek to provide richer, more general 
kernel interfaces than Unix. 
◦ decouple elements of process abstraction 
 virtual address space, memory segments, threads, 

resources, interprocess communication (IPC) endpoints 

◦ provide a fully general set of kernel primitives for 
combining these essential elements in arbitrary 
ways 
 powerful enough to implement Unix “as an application 

program” 

 the kernel interface is not the programming interface 

◦ rethink division of function between kernel and 
user space 
 Which features must be supported in the kernel? 
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The Microkernel Philosophy 

 The microkernel philosophy evolved in the mid-
1980s as a reaction to the increasing complexity 
of Unix kernels. 
◦ V system [Cheriton]: kernel is a “software backplane” 
 advent of LAN networks: V supports distributed systems, 

and mirrors their structure internally (decomposed) 

◦ Mach: designed as a modern, portable, 
reconfigurable Unix 
 improve portability/reliability by “minimizing” kernel code 

 support multiple “personalities”; isolate kernel from API 
changes 

 support multiprocessors via threads and extensible VM 
system 

 Microkernels are widely viewed as having “failed” 
today, but some key ideas (and code) survive in 
modern systems. 
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A Fuzzy Look at Mach and NT 

“microkernel” 

Windows 

subsystem 

server 

Windows 

process 
Unix 

process Unix 

subsystem 

server 

NT “kernel” is 

the core of 

the “executive”. 

Environment server creates processes 

and operates on them via system calls; 

kernel may delegate process system 

calls to the environment server. 

Disclaimer: this is the concept behind 

Mach and the original NT, but early 

Mach 2.5 and today’s W2K/XP look 

quite different. 
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Microsoft NT Objects 
 Most instances of NT kernel abstractions are 

“objects” named by protected handles held by 
processes. 
◦ Handles are obtained by create/open calls, subject 

to security policies that grant specific rights for 
each handle. 

◦ Any process with a handle for an object may 
operate on the object using operations (system 
calls). 
 Specific operations are defined by the object’s type. 

 
port 

file 

event 

object 

handles 

user space kernel 

NT object handles are named, 

represented, and protected exactly 

like Unix file descriptors. 
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NT Processes 

 1. A raw NT process is just a virtual address 
space, a handle table, and an (initially empty) 
list of threads. 

 2. Processes are themselves objects named 
by handles, supporting specific operations. 
 create threads 

 map sections (VM regions) 

 3. NtCreateProcess returns an object handle 
for the process. 
 Creator may specify a separate (assignable) “parent” 

process. 

 Inherit VAS from designated parent, or initialize as 
empty. 

 Handles can be inherited; creator controls per-handle 
inheritance. Distributed Operating System 



Mach Overview 

 Mach is more general than NT in that objects 
named by handles can be served by user-mode 
servers. 
◦ All handles are references to message queues called 

ports. 

◦ Given an appropriate handle (rights) for the port, a 
thread can send or receive from a port: it’s a 
capability. 
 Mach has a rich and complex set of primitives for 

sending/receiving on ports and transferring port rights. 

◦ Some ports are served by the kernel. 

◦ Ports can be served by user processes (tasks). 

◦ Everything is a port; all interactions are through ports. 

◦ Communication (IPC) performance is everything. 
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Mach 

microkernel 

Unix 

process Unix 

server 

tasks/VM 

threads/scheduling 

ports/messages 

emulator 

reflected 

syscall trap 

IPC 

exceptions 
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Evaluating OS Structures 
 How do we evaluate OS structures and 

implementations? 
◦ Maintainability, extensibility, reliability, and 

elegance are difficult to quantify. 
◦ Systems research is a quantitative discipline. 
 “Performance is paramount.” [Cheriton] 

 How can we identify and separate the effects 
caused by: 
◦ artifacts of the current state of hardware 

technology? 
◦ characteristics of the workload? 
◦ essential properties of structure or implementation? 

 How can we draw conclusions of long-term 
significance from measurements of any 
particular system? 
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User/Kernel Division of 

Function 
 1. Many system calls don’t require access to 

mutable global data in the system (e.g., the 
Unix server). 
◦ examples: getpid, installing signal handlers 
 data items are constants or are used only within the 

emulator 

 2. The system can reduce the cost of these 
operations by executing them entirely within a 
library. 
 e.g., the Mach emulator, Unix malloc and free 

 3. A kernel or server primitive is needed only in 
cases involving resource allocation or 
protection. 
 thread libraries, user-level IPC [T. Anderson et. al] 

 logical conclusion: Exokernel “library operating systems” 
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Unix/Mach System Calls 

microkernel 

process 

Unix server 

emulator 

Reflected syscall trap: 

redirect to emulator; 

send message to server. 

IPC 

Syscall trampoline offers binary compatibility at higher cost 

than a DLL (extra trap/return): either scheme can be used. 

Extra TLB references 

in server. 

Extra trap/return for syscall 

messaging to server. 

Some system calls 

are handled directly 

in the emulator. 
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What to Know 

1. The remaining slides in this batch serve to 
illustrate the effect of OS structures on 
performance.  I did not cover them in class this 
year, but they may help to reinforce the 
discussions about OS structure and 
implementation. 

2. Be sure that you understand the key ideas 
behind the three alternative structures we looked 
at: microkernels, library OS (Exokernel), and 
extensible kernels (SPIN).  Be able to 
compare/contrast the goals, approaches, 
strengths, and weaknesses of each. 

3. For the discussion of Exokernel and SPIN in 
class I referenced some of the high-level slides 
from Engler and Savage, which are available on 
the Engler and SPIN web sites linked through 
the readings page on the course web. 
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Issues and Questions for OS 

Performance 
 1. How is evaluating OS performance 

different from evaluating application 
performance? 

 2. (When) is OS performance truly important? 
 SPEC benchmarks: set me up and get out of my way. 

 Amdahl’s Law says optimizing the OS won’t improve 
performance here. 

 What workloads are OS-intensive?  Do they matter? 

 3. How to characterize OS performance? 
 macrobenchmarks measure overall workload 

performance 

 analysis must decompose costs into essential elements 
 allows us to predict the effect of optimizing particular elements 

 microbenchmarks measure individual elements in 
isolation 
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Architectural Basis of OS 

Performance 
 1. OS demands on the architecture diverge 

from applications. 
 We don’t do much computation inside the OS kernel. 

 2. Basic OS functions have architecturally 
imposed costs. 
 OS spends relatively more time in “exceptional” 

operations. 

 mode switches (traps and returns), copy, save/restore 
registers, context switch, handle interrupts, page remap, 
page protect 

 These often depend on memory system behavior. 

 3. “Operating systems aren’t getting fast as fast as applications.” 
 [Ousterhout OSR90], and [Chen/Bershad SOSP93], [Rosenblum SOSP95] 

 Other things being equal, the relative importance of OS 
performance will increase with time. 
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OS Implications for 

Architecture 
 Whose problem is this? [Levy et. al. ASPLOS91] 

 Point: architects must put some effort into 
optimizing operations that are critical to OS 
performance: 
 Design trap/exception mechanisms carefully:  

“exceptions are not exceptional”. [also Levy/Thekkath 94] 

 Kernel code is more write-intensive ==> deepen the write 
buffer. 

 Design cache architectures to minimize user/kernel 
conflicts, etc. 

 Counterpoint: OS builders must design to 
minimize inherent architectural costs of OS 
choices. 
 Minimize expensive operations (e.g., traps and context 

switches). 
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Performance-Driven OS 

Design 
 1. Design implementations to reduce costs of 

primitives to their architecturally imposed 
costs. 
 Identify basic architectural operations in a primitive, and 

streamline away any fat surrounding them. 

 “Deliver the hardware.” 

 2. Design system structures to minimize the 
architecturally imposed costs of the basic 
primitives. 
 If you can’t make it cheap, don’t use it as much. 

 3. Microbenchmarking is central to this 
process. 
 [Brown and Seltzer] is about microbenchmaking 

methodology. 
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Examples 

 What are the architecturally defined 
costs of... 
◦ process creation? 
 fork, and fork by shell 

 exec of statically linked executable 

 exec with dynamic link 

◦ installing a signal handler? 

◦ reading from a file descriptor? 

◦ IPC? 

 How can we determine these costs 
empirically? 
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Costs of Process Creation by 

Fork 
◦ one syscall trap, two return-from-trap, one process 

switch. 

◦ allocate UPAGES, copy/zero-fill UPAGES through 
alias 

◦ initialize page table, copy one stack page (at least) 
 fits in L2/L3?  Depends on size of process? 

◦ cache actions on UPAGES?  for context switch? 
 (consider virtually indexed writeback caches and TLB) 

user ID 

process ID 

process group ID 

parent PID 

children, etc. 
kernel stack 

signal handlers 

process stats 

PCB 

UPAGES (uarea) 
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Additional Costs of Fork on Mach 

or NT 
 1. Kernel call for task/process create with 

VM inheritance from the assigned 
parent. 
 inherit Mach emulator and emulated syscall table 

 2. Additional kernel call(s) to start a 
thread in the child. 
 task create/inherit does not clone any threads 

 3. Mach: 
 extra code/data/stack page references for emulator 

 clean/reset inherited emulator state in child (e.g., stacks, 
globals) 

 set up VM regions shared between server and 
emulator 

 set up IPC port to server in the child 
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Exec Revisited 
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Costs of Exec 

 1. Deallocate process pages and 
translation table. 
 invalidate v-cache (can delay until reallocated) 

 TLB invalidate 

 2. Allocate/zero-fill and copyin/copyout the 
arguments and base stack frame. 
 no v-cache push since no kernel aliasing is needed 

 3. Read executable file header and reset 
page translations. 
 map executable file sections on VAS segments 

 4. Handle any dynamic linking. 
 jump tables or load-time symbol resolution 
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Exec on a Microkernel 
 1. Each primitive action for exec is 

(typically) a kernel call. 
 2. Copyin/copyout of 

arguments/environment and base stack 
frame is problematic. 
◦ need a kernel call to read/write another 

address space 
 (but emulator handles argv/env internally) 
 how to do this copy efficiently? 

◦ similar problem for read/write system calls 
 Mach uses mapped files and handles read/write in 

emulator 
◦ L4 ukernel maps all user pages into the VM of the trusted servers. 

 3. Solution: add exec primitive to the 
“microkernel”. 
◦ Most exec behavior is defined by the executable image header. 
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Lower Bounds on IPC 

 IPC request/response requires a few 
primitive operations: 
◦ context switch 
 cache flush?  TLB flush? 

◦ thread switch or stack switch 
 scheduling decision?  Mach uses handoff 

scheduling. 

 LRPC [Bershad]: decouple threads from address 
spaces 

 threads cross address spaces for cross-domain call 

 adopted in NT quick-LPC and event pair 

◦ save/restore registers...how many? 

◦ copy arguments through the kernel? 

Lesson: “optimize for the 

common case”; the 

common case for 

message passing is local. 
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ASSIGNMENT 

 Q: Explain Unix emulation in MACH. 
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